# Browse

### Seán P. Madden, Olli (Sara) Hume, and Jacqueline S. Booton

Mathematics and technology serve the health sciences as demonstrated in this article,cowritten by one of our calculus students. Creating a lesson based on dosing an antibioticallows teachers and students to see the immediate value of high school calculus and technology.

### Paul Naanou and Sam Rhodes

Students grapple with the problem of finding the volume of two different folds of a traditional Levantine dessert using either geometry or calculus.

May 2020 For the Love of Mathematics Jokes

### Christopher Harrow and Ms. Nurfatimah Merchant

Transferring fundamental concepts across contexts is difficult, even when deep similarities exist. This article leverages Desmos-enhanced visualizations to unify conceptual understanding of the behavior of sinusoidal function graphs through envelope curve analogies across Cartesian and polar coordinate systems.

### Zachary A. Stepp

“It's a YouTube World” (Schaffhauser, 2017), and educators are using digital tools to enhance student learning now more than ever before. The research question scholars need to explore is “what makes an effective instructional video?”.

### J. Michael Shaughnessy

In celebration of NCTM's 100th birthday I'm very pleased to have this opportunity to share this retrospective on two early career events that had a big impact on mathematics education nationally and internationally, and turned out to be surprisingly instrumental in my own professional development.

### Hamilton L. Hardison and Hwa Young Lee

In this article, we discuss funky protractor tasks, which we designed to provide opportunities for students to reason about protractors and angle measure. We address how we have implemented these tasks, as well as how students have engaged with them.

### Matt Enlow and S. Asli Özgün-Koca

This month's Growing Problem Solvers focuses on Data Analysis across all grades beginning with visual representations of categorical data and moving to measures of central tendency using a “working backwards” approach.

### Tim Erickson

We modify a traditional bouncing ball activity for introducing exponential functions by modeling the time between bounces instead of the bounce heights. As a consequence, we can also model the total time of bouncing using an infinite geometric series.