The practice of problem posing is as important to develop as problem solving. The resulting explorations can be mathematically rich.
Search Results
Nicholas H. Wasserman, Keith Weber, Timothy Fukawa-Connelly, and Juan Pablo Mejía-Ramos
A 2D version of Cavalieri's Principle is productive for the teaching of area. In this manuscript, we consider an area-preserving transformation, “segment-skewing,” which provides alternative justification methods for area formulas, conceptual insights into statements about area, and foreshadows transitions about area in calculus via the Riemann integral.