# Browse

### José N. Contreras

### Derek A. Williams, Kelly Fulton, Travis Silver, and Alec Nehring

A two-day lesson on taxicab geometry introduces high school students to a unit on proof.

### Lindsay Vanoli and Jennifer Luebeck

Engaging mathematics students with peers in analyzing errors and formulating feedback improves disposition, increases understanding, and helps students uncover and correct misconceptions while informing opportunities for targeted instruction.

### Josephine Derrick and Laurie Cavey

Challenging to learn, proof can be equally challenging to teach. Insights gleaned about students’ conceptions of proof from 10 high school students who completed four proof-related tasks during one-on-one interviews led to a few instructional takeaways for teachers.

### Amanda Milewski and Daniel Frohardt

Few high school students associate mathematics with playfulness. In this paper, we offer a series of lessons focused on the underlying algebraic structures of the Rubik's Cube. The Rubik's Cube offers students an interesting space to enjoy the playful side of mathematics, while appreciating mathematics otherwise lost in routine experiences.

May 2020 For the Love of Mathematics Jokes

### Anne Quinn

The paper discusses technology that can help students master four triangle centers -- circumcenter, incenter, orthocenter, and centroid. The technologies are a collection of web-based apps and dynamic geometry software. Through use of these technologies, multiple examples can be considered, which can lead students to generalizations about triangle centers.

When visitors enter the High Museum in Atlanta, one of the first pieces of art they encounter is Physic Garden, by Molly Hatch (details in **photographs 1 and 2**). Physic Garden consists of 456 handpainted dinner plates arranged to form a rectangle with 24 horizontal rows and 19 vertical columns and extends from the floor to the ceiling of the first floor. The design of the “plate painting” was inspired by two mid-18th-century English ceramic plates from the museum's collection (**photograph 3**).

### Wayne Nirode

Using technology to solve triangle construction problems, students apply their knowledge of points of concurrency, coordinate geometry, and transformational geometry.