For the Love of Mathematics
May 2020 For the Love of Mathematics Jokes
Transferring fundamental concepts across contexts is difficult, even when deep similarities exist. This article leverages Desmos-enhanced visualizations to unify conceptual understanding of the behavior of sinusoidal function graphs through envelope curve analogies across Cartesian and polar coordinate systems.
“It's a YouTube World” (Schaffhauser, 2017), and educators are using digital tools to enhance student learning now more than ever before. The research question scholars need to explore is “what makes an effective instructional video?”.
In celebration of NCTM's 100th birthday I'm very pleased to have this opportunity to share this retrospective on two early career events that had a big impact on mathematics education nationally and internationally, and turned out to be surprisingly instrumental in my own professional development.
In this article, we discuss funky protractor tasks, which we designed to provide opportunities for students to reason about protractors and angle measure. We address how we have implemented these tasks, as well as how students have engaged with them.
This month's Growing Problem Solvers focuses on Data Analysis across all grades beginning with visual representations of categorical data and moving to measures of central tendency using a “working backwards” approach.
We modify a traditional bouncing ball activity for introducing exponential functions by modeling the time between bounces instead of the bounce heights. As a consequence, we can also model the total time of bouncing using an infinite geometric series.
This article focuses on students use and understanding of counterexamples and is part of a research project on the role of examples in proving. We share student interviews and offer suggestions for how teachers can support student reasoning and thinking and promote productive struggle by incorporating counterexamples into the classroom.
Over the past 100 years, technology has evolved in unprecedented fashion. Calculators, computers, and smart phones have become ubiquitous, yet school mathematics experiences for many children still remain without many powerful technological tools for the exploration of mathematics. We consider the evolution of some tools as we imagine a future.