An instructional activity positions students’ quantitative reasoning as the central mechanism of problem solving based on the notions of fairness and reasonableness.
Browse
Monica G. McLeod and Daniel K. Siebert
Growing Problem Solvers provides four original, related, classroom-ready mathematical tasks, one for each grade band. Together, these tasks illustrate the trajectory of learners’ growth as problem solvers across their years of school mathematics.
Karen C. Fuson and Steve Leinwand
The power of Number Talks and extensions that can build to an equitable Math Talk Classroom
Yael Luz and Michal Yerushalmy
We report on an innovative design of algorithmic analysis that supports automatic online assessment of students’ exploration of geometry propositions in a dynamic geometry environment. We hypothesized that difficulties with and misuse of terms or logic in conjectures are rooted in the early exploration stages of inquiry. We developed a generic activity format for if–then propositions and implemented the activity on a platform that collects and analyzes students’ work. Finally, we searched for ways to use variation theory to analyze ninth-grade students’ recorded work. We scored and classified data and found correlation between patterns in exploration stages and the conjectures students generated. We demonstrate how automatic identification of mistakes in the early stages is later reflected in the quality of conjectures.
Karen Zwanch and Bridget Broome
This game teaches algebraic generalizations through differentiated play in pairs, small groups, or as a whole class and uses manipulatives to bridge numerical and algebraic thinking.
T. Royce Olarte and Sarah A. Roberts
Teachers can implement a mathematics language routine within in-person/hybrid and remote instructional contexts.
Katherine Ariemma Marin and Natasha E. Gerstenschlager
Growing Problem Solvers provides four original, related, classroom-ready mathematical tasks, one for each grade band. Together, these tasks illustrate the trajectory of learners’ growth as problem solvers across their years of school mathematics.
Wayne Nirode
The author alters the definitions of ellipses and hyperbolas by using a line and a point not on the line as the foci, instead of two points. He develops the resulting prototypical diagrams from both synthetic and analytic perspectives, as well as making use of technology.
Chris Harrow, Justin Gregory Johns, Ryne Cooper, and Vivekanand Mandel
Problems to Ponder provides 28 varying, classroom-ready mathematics problems that collectively span PK–12, arranged in the order of the grade level. Answers to the problems are available online. Individuals are encouraged to submit a problem or a collection of problems directly to mtlt@nctm.org. If published, the authors of problems will be acknowledged.
Merav Weingarden and Einat Heyd-Metzuyanim
One of the challenges of understanding the complexity of so-called reform mathematics instruction lies in the observational tools used to capture it. This article introduces a unique tool, drawing from commognitive theory, for describing classroom discussions. The Realization Tree Assessment tool provides an image of a classroom discussion, depicting the realizations of the mathematical object manifested during the discussion and the narratives that articulate the links between these realizations. We applied the tool to 34 classroom discussions about a growing-pattern algebraic task and, through cluster analysis, found three types of whole-class discussion. Associations with classroom-level variables (track, but not grade level or teacher seniority) were also found. Implications with respect to applications and usefulness of the tool are discussed.