In this article we detail a research study using the Instructional Quality Assessment (IQA) Rubrics () as the frame for a professional development with mathematics teachers in grades 3-8. We wanted to create a professional development around a tool that was typically used in research as a way to observe teachers, as a tool to use with teachers on their reflection of instruction. In this study we share both the researchers’ and teachers’ perspectives of affordances and constraints of the professional development and observational rubrics.
Browse
Amber G. Candela and Melissa Boston
Jared Webb and P. Holt Wilson
ABSTRACT
In this article, we describe rehearsals designed for use in professional development (PD) with secondary mathematics teachers to support them in reimagining and refining their practice. We detail a theoretical framework for learning in PD that informs our rehearsal design. We then share evidence of secondary mathematics teachers’ improvements in classroom practice from a broader study examining their participation in a PD that featured the use of rehearsals and provide examples of the ways two teachers’ rehearsals of the practice of monitoring students’ engagement with mathematics corresponded to changes in their practice. We conclude with a set of considerations and revisions to our design and a discussion of the role of mathematics teacher educators in supporting teachers in expanding their practice toward more ambitious purposes for students’ mathematical learning.
Megan H. Wickstrom
Preservice elementary teachers (PSTs) often enter their teacher preparation programs with procedural and underdeveloped understandings of area measurement and its applications. This is problematic given that area and the area model are used throughout K–Grade 12 to develop flexibility in students’ mathematical understanding and to provide them with a visual interpretation of numerical ideas. This study describes an intervention aimed at bolstering PSTs’ understanding of area and area units with respect to measurement and number and operations. Following the intervention, results indicate that PSTs had both an improved ability to solve area tiling tasks as well as increased flexibility in the strategies they implemented. The results indicate that PSTs, similar to elementary students, develop a conceptual understanding of area from the use of tangible tools and are able to leverage visualizations to make sense of multiplicative structure across different strategies.
Corey Webel and Sheunghyun Yeo
In this article, we share results from a field experience model in which junior-year methods classes were held in an elementary school and preservice teachers (PSTs) worked with a single student (a “Math Buddy") on mathematics for 30 minutes per day. We focus on the development of PSTs’ skills for exploring children’s thinking and the structures and tools that we used to support this development. Data sources include screencast recordings of interactions with Math Buddies and written reflections completed by PSTs. Although the responsiveness of interactions varied across individuals and interactions, in general, PSTs showed improvements in exploring children’s thinking. We share implications of these findings for similar field experience models and for practice-based approaches to teacher education generally.
Enrique Ortiz
This article includes an original artwork using geometry. Art such as this can foster understanding and appreciation of fundamental concepts across fields.
Mike Naylor
This poem starts with the question in the trunk of the tree, where we imagine that we are deciding to do or not to do something. Each level represents steps in making the decision, with the top indicating a resolution in the future. Phrases wander and change direction, leading to different results. How many paths to a resolution do you see?
Deborah M. Thompson and A. Susan Gay
This article provides actionable steps and tools for teachers to use to promote student discourse while teaching multiplication fact strategies.
Trena L. Wilkerson
How has NCTM leadership shaped the evolution of teaching and learning mathematics? What are your expectations for NCTM leadership?
Toya Jones Frank
This article looks back at NCTM's leadership efforts with respect to equity, access, and empowerment and offers suggestions for moving the work forward.
Katherine Baker, Naomi A. Jessup, Victoria R. Jacobs, Susan B. Empson, and Joan Case
Productive struggle is an essential part of mathematics instruction that promotes learning with deep understanding. A video scenario is used to provide a glimpse of productive struggle in action and to showcase its characteristics for both students and teachers. Suggestions for supporting productive struggle are provided.