The Teaching for Robust Understanding framework facilitates online collaborative problem solving with digital interactive notebooks that position all students as doers of mathematics.

# Browse

### Courtney K. Baker, Terrie M. Galanti, Kimberly Morrow-Leong, and Tammy Kraft

### Amanda K. Riske, Catherine E. Cullicott, Amanda Mohammad Mirzaei, Amanda Jansen, and James Middleton

We introduce the Into Math Graph tool, which students use to graph how “into" mathematics they are over time. Using this tool can help teachers foster conversations with students and design experiences that focus on engagement from the student’s perspective.

### Ming C. Tomayko

A series of activities uses media coverage of a natural disaster to develop quantitative literacy.

### Amanda L. Cullen, Carrie A. Lawton, Crystal S. Patterson, and Craig J. Cullen

In this lesson, third graders were asked how many degrees is a full rotation around a circle. After we gave students time and space to disagree, to make and test conjectures, and to explore, they reasoned about angle as turn and determined a full rotation is 360 degrees.

### Manouchehri Azita, Ozturk Ayse, and Sanjari Azin

In this article we illustrate how one teacher used PhET cannonball simulation as an instructional tool to improve students' algebraic reasoning in a fifth grade classroom. Three instructional phases effective to implementation of simulation included: Free play, Structured inquiry and, Synthesizing ideas.

### Erell Germia and Nicole Panorkou

We present a Scratch task we designed and implemented for teaching and learning coordinates in a dynamic and engaging way. We use the 5Es framework to describe the students' interactions with the task and offer suggestions of how other teachers may adopt it to successfully implement Scratch tasks.

Over the past 100 years, technology has evolved in unprecedented fashion. Calculators, computers, and smart phones have become ubiquitous, yet school mathematics experiences for many children still remain without many powerful technological tools for the exploration of mathematics. We consider the evolution of some tools as we imagine a future.

### Anne Quinn

The paper discusses technology that can help students master four triangle centers -- circumcenter, incenter, orthocenter, and centroid. The technologies are a collection of web-based apps and dynamic geometry software. Through use of these technologies, multiple examples can be considered, which can lead students to generalizations about triangle centers.

### Debasmita Basu, Nicole Panorkou, Michelle Zhu, Pankaj Lal, and Bharath K. Samanthula

We provide an example from our integrated math and science curriculum where students explore the mathematical relationships underlying various science phenomena. We present the tasks we designed for exploring the covariation relationships that underlie the concept of gravity and discuss the generalizations students made as they interacted with those tasks.