Issues of equity in mathematics classrooms existed prior to COVID-19. For many students, however, meaningful participation in mathematical discussions became nearly impossible in online settings during the pandemic. In this study, we note the diversity in and nature of participation in mathematical discourse in an online course for preservice teachers (PSTs). We investigate the influence of implementing two support strategies for discussion: (a) establishing a “rough-draft/revision” orientation to mathematical tasks; and (b) providing time and structure (tasks and prompts) in an online discussion board for PSTs to post their initial thoughts, react to peers’ solutions, and collectively revise their ideas. In this article, we highlight several benefits of these support strategies to equitable PST participation in a unit on number theory. For example, as compared with oral discussions where only a few PSTs offered their ideas, the written discussion format encouraged every PST to post their ideas. Using a rough-draft/revision stance in the prompts fostered sharing and revealed diverse mathematical approaches, perspectives, and ideas. We argue that giving students opportunities to interact with one another and the mathematics in a variety of ways promotes equitable participation.
Browse
Margaret Rathouz, Nesrin Cengiz-Phillips, and Angela S. Krebs
Corey Webel and Sheunghyun Yeo
In this article, we share results from a field experience model in which junior-year methods classes were held in an elementary school and preservice teachers (PSTs) worked with a single student (a “Math Buddy") on mathematics for 30 minutes per day. We focus on the development of PSTs’ skills for exploring children’s thinking and the structures and tools that we used to support this development. Data sources include screencast recordings of interactions with Math Buddies and written reflections completed by PSTs. Although the responsiveness of interactions varied across individuals and interactions, in general, PSTs showed improvements in exploring children’s thinking. We share implications of these findings for similar field experience models and for practice-based approaches to teacher education generally.
Enrique Ortiz
This article includes an original artwork using geometry. Art such as this can foster understanding and appreciation of fundamental concepts across fields.
Katherine Baker, Naomi A. Jessup, Victoria R. Jacobs, Susan B. Empson, and Joan Case
Productive struggle is an essential part of mathematics instruction that promotes learning with deep understanding. A video scenario is used to provide a glimpse of productive struggle in action and to showcase its characteristics for both students and teachers. Suggestions for supporting productive struggle are provided.
Julie M. Amador, David Glassmeyer, and Aaron Brakoniecki
This article provides a framework for integrating professional noticing into teachers' practice as a means to support instructional decisions. An illustrative example is included based on actual use with secondary students.
Patricia F. Campbell, Masako Nishio, Toni M. Smith, Lawrence M. Clark, Darcy L. Conant, Amber H. Rust, Jill Neumayer DePiper, Toya Jones Frank, Matthew J. Griffin, and Youyoung Choi
This study of early-career teachers identified a significant relationship between upper-elementary teachers' mathematical content knowledge and their students' mathematics achievement, after controlling for student- and teacher-level characteristics. Findings provide evidence of the relevance of teacher knowledge and perceptions for teacher preparation and professional development programs.
Shiv Karunakaran, Ben Freeburn, Nursen Konuk, and Fran Arbaugh
Preservice mathematics teachers are entrusted with developing their future students' interest in and ability to do mathematics effectively. Various policy documents place an importance on being able to reason about and prove mathematical claims. However, it is not enough for these preservice teachers, and their future students, to have a narrow focus on only one type of proof (demonstration proof), as opposed to other forms of proof, such as generic example proofs or pictorial proofs. This article examines the effectiveness of a course on reasoning and proving on preservice teachers' awareness of and abilities to recognize and construct generic example proofs. The findings support assertions that such a course can and does change preservice teachers' capability with generic example proofs.
Andrew Tyminski, Corey Drake, and Tonia Land
Despite the prevalence of mathematics curriculum materials in elementary classrooms, most current mathematics methods texts provide little or no support for preservice teachers (PSTs) learning to use curriculum materials. To meet this need, we have designed and studied several modules intended to provide PSTs with opportunities to learn about and from the use of curriculum materials. This article describes our research related to 1 of these modules–Addition Starter Sentences. Our results examine the nature of PSTs' developing content knowledge and pedagogical content knowledge, evidenced through their interactions with and reflections on Standards-based curriculum materials. We conclude with implications for mathematics teacher education research and practice.
This department publishes brief news articles, announcements and guest editorials on current mathematics education issues that stimulate the interest of TCM readers and cause them to think about an issue or consider a specific viewpoint about some aspect of mathematics education. This month, help your teachers plan lessons by coaching them to think about activating students' prior knowledge about content, clearly state the lesson goal, facilitate learning new content, and assess students' learning of the day's work.
Jacque Ensign
Two classrooms become models for their large, urban district.