An example of an after-school club activity gives educators some tools and suggestions to implement such an approach in their schools.
Browse
Rocco Magaletto
How would students feel when learning through the use of mathematical modeling? On investigation, this article reveals that students felt better prepared for assessments, learned valuable life skills, and saw the relevance of mathematics to their lives outside of the classroom.
Katherine Baker, Naomi A. Jessup, Victoria R. Jacobs, Susan B. Empson, and Joan Case
Productive struggle is an essential part of mathematics instruction that promotes learning with deep understanding. A video scenario is used to provide a glimpse of productive struggle in action and to showcase its characteristics for both students and teachers. Suggestions for supporting productive struggle are provided.
Amber G. Candela, Melissa D. Boston, and Juli K. Dixon
We discuss how discourse actions can provide students greater access to high quality mathematics. We define discourse actions as what teachers or students say or do to elicit student contributions about a mathematical idea and generate ongoing discussion around student contributions. We provide rubrics and checklists for readers to use.
Erell Germia and Nicole Panorkou
We present a Scratch task we designed and implemented for teaching and learning coordinates in a dynamic and engaging way. We use the 5Es framework to describe the students' interactions with the task and offer suggestions of how other teachers may adopt it to successfully implement Scratch tasks.
Hamilton L. Hardison and Hwa Young Lee
In this article, we discuss funky protractor tasks, which we designed to provide opportunities for students to reason about protractors and angle measure. We address how we have implemented these tasks, as well as how students have engaged with them.
Debasmita Basu, Nicole Panorkou, Michelle Zhu, Pankaj Lal, and Bharath K. Samanthula
We provide an example from our integrated math and science curriculum where students explore the mathematical relationships underlying various science phenomena. We present the tasks we designed for exploring the covariation relationships that underlie the concept of gravity and discuss the generalizations students made as they interacted with those tasks.