Browse

You are looking at 1 - 10 of 863 items for :

  • Refine by Access: All content x
Clear All
Restricted access

Yael Luz and Michal Yerushalmy

We report on an innovative design of algorithmic analysis that supports automatic online assessment of students’ exploration of geometry propositions in a dynamic geometry environment. We hypothesized that difficulties with and misuse of terms or logic in conjectures are rooted in the early exploration stages of inquiry. We developed a generic activity format for if–then propositions and implemented the activity on a platform that collects and analyzes students’ work. Finally, we searched for ways to use variation theory to analyze ninth-grade students’ recorded work. We scored and classified data and found correlation between patterns in exploration stages and the conjectures students generated. We demonstrate how automatic identification of mistakes in the early stages is later reflected in the quality of conjectures.

Restricted access

Merav Weingarden and Einat Heyd-Metzuyanim

One of the challenges of understanding the complexity of so-called reform mathematics instruction lies in the observational tools used to capture it. This article introduces a unique tool, drawing from commognitive theory, for describing classroom discussions. The Realization Tree Assessment tool provides an image of a classroom discussion, depicting the realizations of the mathematical object manifested during the discussion and the narratives that articulate the links between these realizations. We applied the tool to 34 classroom discussions about a growing-pattern algebraic task and, through cluster analysis, found three types of whole-class discussion. Associations with classroom-level variables (track, but not grade level or teacher seniority) were also found. Implications with respect to applications and usefulness of the tool are discussed.

Restricted access

Dana L. Grosser-Clarkson and Joanna S. Hung

This Perspectives on Practice manuscript focuses on an innovation associated with “Engaging Teachers in the Powerful Combination of Mathematical Modeling and Social Justice: The Flint Water Task” from Volume 7, Issue 2 of MTE. The Flint Water Task has shown great promise in achieving the dual goals of exploring mathematical modeling while building awareness of social justice issues. This Perspectives on Practice article focuses on two adaptations of the task—gallery walks and What I Know, What I Wonder, What I Learned (KWL) charts—that we have found to enhance these learning opportunities. We found that the inclusion of a gallery walk supported our students in the development of their mathematical modeling skills by enhancing both the mathematical analyses of the models and the unpacking of assumptions. The KWL chart helps students document their increase in knowledge of the social justice issues surrounding the water crisis. Using the mathematical modeling cycle to explore social justice issues allows instructors to bring humanity into the mathematics classroom.

Restricted access

Kuo-Liang Chang and Ellen Lehet

Defining a quadratic function through the slopes of its secant/tangent lines leads to the fundamental theorem of calculus (FTC) and an alternative way of understanding integration.

Restricted access

Kym Fry and Lyn D. English

Grade 4 students engage in problem solving through inquiry in an agricultural science context.

Restricted access

Blake E. Peterson, Douglas L. Corey, Benjamin M. Lewis, Jared Bukarau, and Introduction by: Wendy Cleaves

From the Archives highlights articles from NCTM’s legacy journals, previously discussed by the MTLT Journal Club.

Restricted access

Daniel K. Siebert and Monica G. McCleod

Growing Problem Solvers provides four original, related, classroom-ready mathematical tasks, one for each grade band. Together, these tasks illustrate the trajectory of learners’ growth as problem solvers across their years of school mathematics.

Restricted access

Justin Gregory Johns and Chris Harrow

Problems to Ponder provides 28 varying, classroom-ready mathematics problems that collectively span PK–12, arranged in the order of the grade level. Answers to the problems are available online. Individuals are encouraged to submit a problem or a collection of problems directly to mtlt@nctm.org. If published, the authors of problems will be acknowledged.

Restricted access

Sheldon P. Gordon and Michael B. Burns

We introduce variations on the Fibonacci sequence such as the sequences where each term is the sum of the previous three terms, the difference of the previous two, or the product of the previous two. We consider the issue of the ratio of the successive terms in ways that reinforce key behavioral concepts of polynomials.

Restricted access

Emily Dennett

The author uses mathematical concepts to inform her knitting. Her knitting also helps her to experience mathematical concepts in new ways.