This document contains the actual problems for April 2020.

# Browse

### J. Michael Shaughnessy

In celebration of NCTM's 100th birthday I'm very pleased to have this opportunity to share this retrospective on two early career events that had a big impact on mathematics education nationally and internationally, and turned out to be surprisingly instrumental in my own professional development.

### Erell Germia and Nicole Panorkou

We present a Scratch task we designed and implemented for teaching and learning coordinates in a dynamic and engaging way. We use the 5Es framework to describe the students' interactions with the task and offer suggestions of how other teachers may adopt it to successfully implement Scratch tasks.

### Alyson E. Lischka and D. Christopher Stephens

The area model for multiplication can be used as a tool to help learners make connections between mathematical concepts that are included in mathematics curriculum across grade levels. We present ways the area model might be used in teaching about various concepts and explain how those ideas are connected.

### Hamilton L. Hardison and Hwa Young Lee

In this article, we discuss funky protractor tasks, which we designed to provide opportunities for students to reason about protractors and angle measure. We address how we have implemented these tasks, as well as how students have engaged with them.

### Matt Enlow and S. Asli Özgün-Koca

This month's Growing Problem Solvers focuses on Data Analysis across all grades beginning with visual representations of categorical data and moving to measures of central tendency using a “working backwards” approach.

### George J. Roy, Jessica S. Allen, and Kelly Thacker

In this paper we illustrate how a task has the potential to provide students rich explorations in algebraic reasoning by thoughtfully connecting number concepts to corresponding conceptual underpinnings.

### Tim Erickson

We modify a traditional bouncing ball activity for introducing exponential functions by modeling the time between bounces instead of the bounce heights. As a consequence, we can also model the total time of bouncing using an infinite geometric series.

### Dan D. Meyer

Students use computers outside and inside of math classes and they enjoy them immeasurably more outside of math class. That's because, outside of class, they use their computers in ways that are creative and social. The same can and must be true about computers inside of math class.