Sophia Kovalevsky's story

# Browse

### George J. Roy, Jessica S. Allen, and Kelly Thacker

In this paper we illustrate how a task has the potential to provide students rich explorations in algebraic reasoning by thoughtfully connecting number concepts to corresponding conceptual underpinnings.

### Tim Erickson

We modify a traditional bouncing ball activity for introducing exponential functions by modeling the time between bounces instead of the bounce heights. As a consequence, we can also model the total time of bouncing using an infinite geometric series.

### Dan D. Meyer

Students use computers outside and inside of math classes and they enjoy them immeasurably more outside of math class. That's because, outside of class, they use their computers in ways that are creative and social. The same can and must be true about computers inside of math class.

### Erin E. Baldinger, Matthew P. Campbell, and Foster Graif

Students need opportunities to construct definitions in mathematics. We describe a sorting activity that can help students construct and refine definitions through discussion and argumentation. We include examples from our own work of planning and implementing this sorting activity to support constructing a definition of linear function.

### Rebecca Vinsonhaler and Alison G. Lynch

This article focuses on students use and understanding of counterexamples and is part of a research project on the role of examples in proving. We share student interviews and offer suggestions for how teachers can support student reasoning and thinking and promote productive struggle by incorporating counterexamples into the classroom.

### Krista L. Strand and Katie Bailey

K-5 teachers deepen their understanding of the Common Core content standards by engaging in collaborative drawing activities during professional development workshops.

### M. Kathleen Heid

Technological tools for mathematics instruction have evolved over the past fifty years. Some of these tools have opened the door to explorations of new mathematics. Features of others have made access to curricular mathematics more convenient. Thoughts on this evolution are shared.

### John K. Lannin, Delinda van Garderen, and Jessica Kamuru

This manuscript discusses two important ideas for developing student foundational understanding of the number line: (a) student views of the number sequence, and (b) recognizing units on the number line. Various student strategies and activities are included.

### Ed Dickey

A personal reflection by Ed Dickey on the influence and legacy of NCTM's journals.