Using Moment-by-Moment Reading Protocols to Understand Students’ Processes of Reading Mathematical Proof

View More View Less
  • 1 Texas State University
  • | 2 Arizona State University

This article documents differences between novice and experienced undergraduate students’ processes of reading mathematical proofs as revealed by moment-by-moment, think-aloud protocols. We found three key reading behaviors that describe how novices’ reading differed from that of their experienced peers: alternative task models, accrual of premises, and warranting. Alternative task models refer to the types of goals that students set up for their reading of the text, which may differ from identifying and justifying inferences. Accrual of premises refers to the way novice readers did not distinguish propositions in the theorem statement as assumptions or conclusions and thus did not use them differently for interpreting the proof. Finally, we observed variation in the type and quality of warrants, which we categorized as illustrate with examples, construct a miniproof, or state the warrant in general form.

Contributor Notes

Paul Christian Dawkins, Department of Mathematics, Texas State University, MCS 470, San Marcos, TX 78666; pcd27@txstate.edu

Dov Zazkis, School of Mathematical and Statistical Sciences, Arizona State University, P.O. Box 871804, Tempe, AZ 85287; dzazkis@asu.edu

Journal for Research in Mathematics Education
  • Aaron, W. R., & Herbst, P. (2012). Instructional identities of geometry students. The Journal of Mathematical Behavior, 31(3), 382400. https://doi.org/10.1016/j.jmathb.2012.04.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blau, H. I. (2008). Foundations of plane geometry (2nd ed.). Whittier.

  • Britt, M. A., Rouet, J.-F., & Durik, A. M. (2017). Literacy beyond text comprehension: A theory of purposeful reading. Routledge. https://doi.org/10.4324/9781315682860

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawkins, P. C. (2015). Explication as a lens for the formalization of mathematical theory through guided reinvention. The Journal of Mathematical Behavior, 37, 6382. https://doi.org/10.1016/j.jmathb.2014.11.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duval, R. (2007). Cognitive functioning and the understanding of the mathematical processes of proof. In P. Boero (Ed.), Theorems in schools: From history, epistemology, and cognition to classroom practice (pp. 135161). Sense Publishers.

    • Search Google Scholar
    • Export Citation
  • Fletcher, C. R., Lucas, S., & Baron, C. M. (1999). Comprehension of mathematical proofs. In S. R. Goldman, A. C. Graesser, & P. van den Broek (Eds.), Narrative comprehension, causality, and coherence: Essays in honor of Tom Trobasso (pp. 195207). Erlbaum.

    • Search Google Scholar
    • Export Citation
  • Halliday, M. A. K. (1985). An introduction to functional grammar. Edward Arnold.

  • Harel, G. (2013). Intellectual need. In K. R. Leatham (Ed.), Vital directions for mathematics education research (pp. 119151). Springer. https://doi.org/10.1007/978-1-4614-6977-3_6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodds, M., Alcock, L., & Inglis, M. (2014). Self-explanation training improves proof comprehension. Journal for Research in Mathematics Education, 45(1), 62101. https://doi.org/10.5951/jresematheduc.45.1.0062

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inglis, M., & Alcock, L. (2012). Expert and novice approaches to reading mathematical proofs. Journal for Research in Mathematics Education, 43(4), 358390. https://doi.org/10.5951/jresematheduc.43.4.0358

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krupnik, V., Fukawa-Connelly, T., & Weber, K. (2018). Students’ epistemological frames and their interpretation of lectures in advanced mathematics. The Journal of Mathematical Behavior, 49, 174183. https://doi.org/10.1016/j.jmathb.2017.12.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magliano, J. P., & Millis, K. K. (2003). Assessing reading skill with a think-aloud procedure and latent semantic analysis. Cognition and Instruction, 21(3), 251283. https://doi.org/10.1207/S1532690XCI2103_02

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magliano, J. P., Millis, K. K., The RSAT Development Team, Levinstein, I., & Boonthum, C. (2011). Assessing comprehension during reading with the Reading Strategy Assessment Tool (RSAT). Metacognition and Learning, 6(2), 131154. https://doi.org/10.1007/s11409-010-9064-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mejía-Ramos, J. P., Fuller, E., Weber, K., Rhoads, K., & Samkoff, A. (2012). An assessment model for proof comprehension in undergraduate mathematics. Educational Studies in Mathematics, 79(1), 318. https://doi.org/10.1007/s10649-011-9349-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mejía-Ramos, J. P., Lew, K., de la Torre, J., & Weber, K. (2017). Developing and validating proof comprehension tests in undergraduate mathematics. Research in Mathematics Education, 19(2), 130146. https://doi.org/10.1080/14794802.2017.1325776

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Millis, K., & Magliano, J. (2012). Assessing comprehension processes during reading. In J. P. Sabatini, T. O’Reilly, & E. R. Albro (Eds.), Reaching an understanding: Innovations in how we view reading assessment (pp. 3554). Rowman & Littlefield Education.

    • Search Google Scholar
    • Export Citation
  • Rotman, J. J. (2007). Journey into mathematics: An introduction to proofs. Dover.

  • Samkoff, A., & Weber, K. (2015). Lessons learned from an instructional intervention on proof comprehension. The Journal of Mathematical Behavior, 39, 2850. https://doi.org/10.1016/j.jmathb.2015.05.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schleppegrell, M. J. (2007). The linguistic challenges of mathematics teaching and learning: A research review. Reading and Writing Quarterly, 23(2), 139159. https://doi.org/10.1080/10573560601158461

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical statements. Educational Studies in Mathematics, 29(2), 123151. https://doi.org/10.1007/BF01274210

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, M. D., & van de Sande, C. C. (2014). Reading mathematics for understanding—From novice to expert. The Journal of Mathematical Behavior, 35, 7486. https://doi.org/10.1016/j.jmathb.2014.06.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory (2nd ed.). Sage.

    • Search Google Scholar
    • Export Citation
  • Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education, 38(3), 289321.

  • Velleman, D. J. (2006). How to prove it: A structured approach (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511808234

  • Weber, K. (2008). How mathematicians determine if an argument is a valid proof. Journal for Research in Mathematics Education, 39(4), 431459.

    • Search Google Scholar
    • Export Citation
  • Weber, K. (2015). Effective proof reading strategies for comprehending mathematical proofs. International Journal of Research in Undergraduate Mathematics Education, 1(3), 289314. https://doi.org/10.1007/s40753-015-0011-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinberg, A., & Thomas, M. (2018). Student learning and sense-making from video lectures. International Journal of Mathematical Education in Science and Technology, 49(6), 922943. https://doi.org/10.1080/0020739X.2018.1426794

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinberg, A., Wiesner, E., & Fukawa-Connelly, T. (2014). Students’ sense-making frames in mathematics lectures. The Journal of Mathematical Behavior, 33, 168179. https://doi.org/10.1016/j.jmathb.2013.11.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zazkis, R., & Hazzan, O. (1998). Interviewing in mathematics education research: Choosing the questions. The Journal of Mathematical Behavior, 17(4), 429439. https://doi.org/10.1016/S0732-3123(99)00006-1

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1 1 0
Full Text Views 9 9 0
PDF Downloads 8 8 0
EPUB Downloads 0 0 0